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I
I. INTRODUCTION

Work reported in /1/ has shown that the principle of minimum cross—entropy

(minimum directed divergence) provides a correct , general method of inductive

inference in terms of continuous probability densities when given a prior

density and information about the “true” density in the form of expected

values. In this paper , I show how cross—entropy minimization can be used to

estimate power spectra when given a prior estimate of the spectrum and new

information in the form of autocorrelation function samples. This new

approach reduces to maximum entropy spectra l analysis /2/ in certain special

cases , and can be thought of as providing a fundamental derivation of the

maximum entropy technique .

A. Maximum Entro2y Spectral_ Anal~~j~ (MESA)

Because the power spectrum S(f) of a band—limited , stationary process is

related to its autocorrelation function R(t) by a Fourier trar arm, and

because it is relatively easy to measure the autocorrelation function, many

spectral analysis techniques start wi th samples of the autocorrelation

function . The classical approach uses spectral window functions /3/. In this

approach one takes the Fourier transform of the product R(t)W(t), where R( t)

is the measured autocorrelation function in the range t~( T, and where W(t)

is a known window function with W (t) 0 for Iti ) T. One then estimates the

unknown power spectrum S(f) by exploiting the convolution theorem, which

states that the Fourier transform of the product of two time domain functions

is equal to the convolution in the frequency domain of their Fourier

transforms . Although mathematic ally elegant , the classical procedure can be
Note: Manuscript submitted Novemb.r 29, 1978.
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seen to distort the known values of R(t), ~~ < T , and to assume that R(t) — 0

in the unknown region (ti )T, despite the fact that R(t) cannot in general be

zero everywhere in this region . An alternative approach is to extend R(t) 80

as to take on reasonable values in the unknown region (ti > T and to estimate

S( f )  by taking the Fourier transform of the resulting extended function. As a

general approach this seems more reasonable than the classical approach , but

it leaves open the question of how to extend the measured portion of R(t) .

In proposing the technique called Maximum Entropy Spectral Analysis

(MESA) , Burg /2/ suggested that R (t) be extended in a manner that maximizes

the entropy of the underlying stationary process. Specifically, Burg proposed

that the power spectrum S (f) be estimated by maximizing

Iw

3 df log( S( f) )  ( 1)

0

subjec t to the known constraints

R(tk
) — Jdf S(f) exp(2~

itkf), (2)

-w
where V is the bandwidth, and where R(tk), k 1 ,2,...,m, are known samp les of

the autocorrelation function.

Maximum entropy spectral analysis can be seen /4/ as an application of

Jayne s ’s maximum entropy principle /5/, which app1ie~ to situations in which

one wishes to estimate or guess at an unknown probabilities qt (z~) when

given a set of expected value.

k 
— ~~.q t (x j)g~(x.) , (3)

k — 1,2,...,.. The maximum entropy principle states that , of all the

dis tributions tha t satisfy the constraints (3), one should choose the one with

2
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the largest entropy

R (q ) — q(x 1)log(q (x 1))  . (4)

In tu i t ive ly, the maximum entropy principle follows from the the fact that , to

wi th in  the choice of logar i thmic base , entropy (4) is a unique measure of the

uncer ta in ty  represented by the d i s t r ibu t ion  q (x . )  / 6 1, 1 7/ .  Jayne s argues

that the maximum entropy d i s t r i bu tion  is “the only unbiased assignment we can

make ; to use ~ny other wou ld amount to a rb i t r a ry  assumption of informat ion

which by hypothesis we do not have ” /5 , p. 623/ . Similar ly ,  the maximum

entropy d i s t r ibution “agree s with what is known, but expresses ‘maximum

uncertainty ’ with respect to all other matters” /8, p.231 1.

The maximum entropy princ iple is applied somewhat indirectly in MESA. The

expression (1) is the entropy gain in a stochastic process that is passed

through a linear filter with characteristic function 1(f), where

S( f ) — I Y ( f ) 1 2 (see /6, pp. 93—95/, /14, pp.4l2—lel4/, /26, p. 243/). If the

inpu t process is white noise , then the output process has spectral powe r

density S(f). This suggests that the process entropy can be maximized by

maximizing the entropy gain of the f i l t e r  that produces the process. Thus ,

(1) is maximized subject to the constraints (2).

8. Limited Acceptance of MESA Viewpoint

Burg ’s proposal /2/ led to a variety of practical and useful spectral

estimation algorithms /9/-/18/, but it seems fair to say that, despite its

• strong intuitive appeal , MESA has not had widespread acceptance. The reasons

for this appear to go beyond the natural inertia that results fro, familiarity

with the long—standing, classical approach , particularly since MESA is known

to be equivalent to minimum lecat—squares estimation /1 0 1, 119 / .

3
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I believe that much of the resistance to the MESA viewpoint stems from

doub t about the val i d i t y  of the maximum entropy princ i p le , which has remained

controv e r s i a l  /20 /— / 25 /  desp i te  numerous successfu l app l ications (see / 1/ ) .

To some , en t r opy ’s prop er t ies  as an in fo rmat ion  measure make i t  obvious that

entropy maximization is the correct way to account for constraint

i n fo rma t ion . To others , such an informa l and intuitive justification yields

p laus i b i l i t y  for the maximum entropy pr inc i ple , bu t not proof ——— why maximize

ent ropy , why not some other func t ion? Moreover , even i f one accepts the

maximum entropy p r inc i p le , there are wel l —k nown problems /7/ with extending i t

fro m ( 3 ) — ( 4 )  to the cont inuous case. Such an extension is required , since

d e r i v a t i o n s  of ( 1) deal with continuous probabi l i ty  dens i t i es  (/ 6 , pp. 93—95/,

/ 14 , pp. 412 — 14/ ,  /26 , p. 243/) .  Some of the resistance to MESA may also stem

from the fact  that  the maximum entropy princi ple is app l ied indirect ly in

terms of f i l t e r i n g  rather than d i r ec t l y in terms of underl y ing probab i l i ty

densities.

A l l  of these hes i t a t i ons  can be addressed in l ight  of the results  for

c ross—entropy minimizat ion  that were obtained in / 1/ .

C. Outline

Sec t ion II sunun arize s the princ i p le of minimum cross—entropy and discusses

i n f ormal l y the sense in which t h i s  principle provides a correct , general

method of inductive inference /1/. In Sect i on III , I descr ibe stochast ic

signals in terms of frequency domain probability densities , I derive the

minimum cr085—entropy density given known expected spectra l powers, and I

discuss two different possible densities for white noise —— one uniform

probability !ensity and one non—un iform density. In Section IV , I derive the

cross—entropy between the input and output of a linear filter and show that

4

• — —- -- —.—— —--——----—————--—---—---~~~~~~~~~ —-——-—~~..-- -—------ ~~- — — 

- . _ _ _ _ _ _ _ _



I!

the resulting expression reduces to (1) when the input is one of the white

noise densities introduced in Section III but not when the input is the other

one . Section V contains derivations of minimum cross—entropy densit ies and

corresponding power spectrum estimates when given information in the form of

au tocorr elat ion samp les for cases both with and without previous est imates of

th e power spectrum . The derivation s are carried out twice ——— once direct l y

in terms of the underl y ing probab i l i ty dens it ies , and once indirectly in terms

of l inear f i l t e r s . The resul ts  are compared with those of MESA in Section

VI. Some remarks about possible algorithms (Section VII) are then followed by

bt~ief conclusions (Section viii) .

II. CROSS ENTROPY MINIMIZATION

A. A General Inference Problem Involving Probability Densities

Let de note a sin gle s ta te of some system that has a set p of poss ible

system states and a probabili ty density  q~ ( x) of s tates.  Let ~ be the set of

all  probabi l i ty  densi t ies  q on D such that q(x ) )~ 0 for x E D  and

~ dx q(x) = 1 - (5)

0
We assume that the ex i st ence o f q~€ ~~~. i.s known but that qt itself  is unknown.

The density qt is sometime s known as a “true” density.

Suppose pE~~. is a prior density that is our current estimate of qt , and

suppose we gain new information about qt in the form of a set of expected

values

jdx qt (x)g (~ ) a 4r) - 

~r (6)

5
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1

for a known set of bounded functions g (~~) and numbers j ,  r = 1, . . .  ,m.

Now, because the constraints (6) do not determine qt completely, they are

satisfied not only by cit but by some subset of densities Jc D. . Which single

dens i t y  should we choose from this  subset to be our new estimate of qt , and

how should we use the pr ior p and the new in fo rmat ion  (6)  in making this

cho ice?

B. The Pr inci p le o f Minimum Cross-Entropy

The solut ion to this inference problem is obtained by m i n i m i z i n g  a

functional H(q,p) called cross—entropy ,

H(q,p) = dx q(x)log(q(x)/p(x)) - ( 7 )

Spec i f i c a l l y ,  of a l l  the dens i t ies q ’~~~ tha t  sat isf y the constra in ts  ( 6) ,  we

choose the one with the smallest cross—entropy H(q ’,p) with respect to the

prior p. Stated differentl y, the posterior density q satisfies

H ( q , p )  = mm H( q ’ ,p)
q ’~ 3

where ~Z compr ises al l  of the den s i t ies tha t sat isf y the cons t ra in t s  ( 6 ) .

Mathematicall y, the solution is obtained using the method of Lagrangian

mult ip l iers and standard techni ques fro m the calculus  of var ia t ions .  The

minimization condition is

log~q (x”/p(x)) + + k~, + 
~~r 

(3g (x) 0 , (9)

where the are Lagrangian multi pliers corresponding to the constraints

(6), and where ~ is a Lagrangian multi plier corresponding to the

normalizatil)n constraint (5). The solution of (9) is

6
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q (~ ) = p (x)exp (— ~~ 
— 

~~~ (
~~g1~~

x)), (10)

where ~ ~~,,+ 1. It is convenient to wri te ( 10) in the form

q(x) Z~~p(~)exp (— Zr ~~~~~~~ , ( 1 1)

where Z is the “par t i t ion funct ion ” ,

2 = exp(~X )  = Jdx p ( x ) e x p (—  Z (!r~~(x)) . (12)

The value s of the mult ip l iers (3r are determi ned by the known expectation

values 
~ 

in (6 ) .  One can express the posterior q d ir ectl y in terms of the

values 
~r 

by solv ing the equa t ion s

z
_ 1

~~~
z

— 

~— log( Z) ( 13)

for the ( r ’ 
or by subs t i tu t ing  ( 11) into the constraint  equations (6)  and

solving for the (~r • Such solut ions are often d i f f i c u l t  or impossible to

obtain anal y t i ca l l y, but one can obtain them computationall y in general

/1 , Appendix B/, /27/.

The princ iple of minimum cross entropy also applies when , in addition to

equal i ty  cons t ra in ts  (6) ,  we gain new information about qt in the form of a

bound on an expec ted value ,

Jd~ qt (x ) g (x )  ~ <8) ), I - ( 14)

Such an inequality constraint is handled as follows: First one solves for the

minimum cross-entropy density given only the equality constraints (6). If the

7
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resulting density happens to sa t i s f y (14), then this density is the overa l l

solution . If (14) is not satisfied , then the overall sclution is the minimum

cross—entropy densi ty g iven (6) and the additional equality constraint <g>

C. Background and Justification of Cross—Entropy Minimization

Cross—entropy goes by othe r names , inc lud i n g  expec ted wei gh t of evidence

/28 , p. 72!, di rected d ivergence /29, p. 6/, and rela tive entropy /20/. The

term cross—entropy is due to Good /30/. The princ i p le of m inimum

cro ss—entropy was first proposed by Ku l lback  /29 , p .371, who ca l led  i t a

pr inc i ple of minimum directed divergence or minimum discrimination

i nformation . It has been advocated in various forms by others /30/, /3L

/32/, including Jaynes /8/, /33/, who showed tha t genera l i z i n g  en t ropy

maximization to continuous densities leads to (7) with p (x) being called an

“invar i ant measure” instead of a prior density. Since entropy maximization

does not deal with prior  densi t ies — — — the re being an imp lici t assumption of

un i form priors — — -  this just expresses the fac t that a uniform prior in one

coordina te system may not be uniform in another. Cross—entropy minimization

has been app l i ed  p r i m a r i l y to statistics /29/, /30/, /34/, but also to

statistical mechanics /35/, chemistry /36/, pattern recognition /37/, /38/,

and the computer storage of probability dis tributions /39/.

Like entropy , cross—entropy can be charac terized axiomaticall y /32/. Its

properties are desirable for an information measure /31/, /32/, and i t can be

argued /40/ that cross—entropy measures the amount of information necessary to

ch ange a pr i or p in to the posterior q. The princ i p le of cross—en tropy

mini mization then follows intuitivel y,  much l ike entropy maximization . In /1/

we argued that such justification s are weak , not only because they rel y on

informal , i n t u i t i v e  arguments , but also because they ar e indirect ——— they are

8
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t

based on a fo rmal descri pt ion of what  is required of an information measure

rather than on a formal descri ption of what is required of a method for taking

new inform ation into account.

Our approach in /1/ was to formalize the requirements of inductive

inference directl y in terms of a set of consistency axioms that make no

reference to information measures or properties of information measures. All

of the ax ioms are based on a sing le fu ndamental princ ip le : If a problem can be

solved in more than one way, the results should be consistent. Informally,

the axioms may be phrased as follows:

1) Uni queness. The resul ts  of taking new information into account should

be uni que .

2) Invaria nce. It shouldn ’t matter in which coord i nate system we account

for new informat ion .

3) System independence. It shouldn ’t matter whether we account for

independent information about independent systems separately in terms

of d f f e ren t  probabi l i ty  densities or together in terms of a joint

dens i ty .

4) Subset Independence. It shouldn ’ t matter whether we account for

information about an independent subset of system states in terms of a

separate conditional density or in terms of the full system density.

We were then able to prove /1/ that the princ iple of minimum cross—entropy

provides a correct , general method of inductive inference in the following

sense: Given a prior d e n s i t y  and new informat ion in the form of constraints

on expected va l ues , there is  onl y one poster ior  density sat isf y ing these

constraints that can be chosen in a manner that satisfies the axioms ; this

unique posterior can be obtained by minimizing cross—entropy .

9
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III. MINIMUM CROSS-ENTROPY PROBABILITY DENSITIES FOR STOCHASTIC SIGNALS

A. Power Spectrum Probability Densities

Consider time—domain signals of the form

s(t )  akeos(økt)  + b
k
sin(Lo

k
t )  , ( 15)

h’s I

with non—zero that need not be uniformly spaced . These are

discrete—spectrum , band—limited signals without DC components. (The

assumpt ion of no DC term , which is reasonable for manj signal process ing

app l i cat ions , is made for mathemat ica l  convenience.) The

power at each frequency is given by the variables

= a~~+ b ~ . (16)

If we consider the to be random variables , we may describe a stochastic

signal in terms of a joint probability density q(x), where we write x for

x 1,x2,... ,x .  Instead of constan tly referring to q(~) as the spectral

power probability density of a stochastic signal , we will informally refer to

q(~ ) as a “signal.”

B. Minimum Cross—Entropy Densities Given Expected Spectral Powers

Consider first the problem of choosing q(x) when we know the total

expected power per discrete frequency

( 17)

where dx dx 1dx2. . .dx~. To apply the principle of minimum

cross—entropy, we need a prior  densi ty p (x )  to represent our state of

knowledge before we learn even (17). Since in any real situation there will

10
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be a physical limi t on the magitude of the x.K, we assume that the domain of

x is bounded. We may therefore use a uniform prior density. In general,

whether or not it is valid to assume a uniform prior density for continuous

probablity densit ies is a d i f f i c u l t  question /8/. Therefore, al though we

assume a uniform prior p(x) in the following , we shall consider the question

more carefully later in this section .

We choose q(x) by minimizing cross—entropy subject to the constraints (5)

and (16). The result (see (10)) is

q (x )  = A exp (— 13 !kxk
’)

where is the Lagrangian multiplier corresponding to (16), and where the

uniform prior and the Lagrang ian mult ipl ier  corresponding to (5) have been

absorbed into the constant A,

~cIx 1 çdx25.. ~~dx 
exp(_~3Z~x~) . (18)

Provided that P is much less than the maximum value of the we may use

integration limits of (O,~°) in (18); this leads to A 
~~~~~~~~ In terms of

the mult ip lier (3 , the tot a l power constraint (17) becomes

= _
~: ~~~k~~~

1C
k ~~

exp (—
~~xk ) 1Jdxmexp (_

~~xm )
n

— “Is
The posterior q(x) is therefore

q(x) TT(l/P ) exp(-x.,~/P) 
• 

(19)

Thus , q (x) is a multivariate exponential — —— each spectral power Xk is

11
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exponentiall y distributed with mean P.

Now consider the more general problem - in which we learn the expected

spec tral power 
~k 

at each frequency,

= (x.~) = ~ dx x.~q(x )  . (20)

Again using a uniform prior , the minimum cross—entropy posterior in this

case is -

= l l ( h / P k ) exp(-x
k/Pk

) (21)

(the derivation is similar to that of (19)). In fact , the same posterior (21)

results if (19) is used as a prior instead of a uniform prior .

We now return to the question of the uniform prior. One might wonder how

differentl y (21) migh t have turned out had we described the signal originally

as a probability density in the variables a.K , bk (see 
(15)) and used a

prior that was uni form in ak, bk rather than uniform in the variables

(see (16)). In this case the constraints (20) take on the form

= ~~~ + b~) — ~dadb (a~ + b~ )q (a ,b) . (22)

With a uniform prior p(a,b) , the result of cross—entropy minimization is

q(a,b) A exp(— Z’~ (¼(~k + b~
))

Solving for A, using (5), and for the multipliers using (22) , yields

~~~~~~ — TT(”~k) exp (— ( a ~ + b
~

)/Pk) (23)

Thus the variables and b
k have Gaussian dis tributions with zero means

and var iances 
~k
’2
~ 

Since the var iances correspond to power expec tat ions

12
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or g~ , this just shows that the expected power 
~k 

is

d ivided evenly between the two quadrature components.

Our next step is to transform (23) to a density in terms of of the

variables and to compare the result with (21). We begin by transforming

from (ak,hk) coordinates to (rk, 9k~ 
coordinates, where

2 2 2rk
a
k
+ b

k
and

= tan
~~

(b
k/ak)

The volume elements in the two coordinate systems are related by

dakdbk — rkdrkdøk. Since q(a,b)dad~ — q(~ , 0 )&dB , it follows

that

q(~ ,9) 
— ¶T(rk/tr Pk)exp(—r~

/Pk)
and

q(r )  
~
fl• (2rk/Pk)exp (—r~ /Pk

) (24 )

hold , where in (24) we have integrated over the 9k coordinates. Now

and are related by X
K 

— r~, so that dxk — 2rkdrk. Since

q(x) dx — q(r )dr , it follows from (24) that q(~) is given by

q(x ) IT(1/Pk) exp (-x.,~/Pk)

which is the same as (21). Thus, when given information in the form of

expected spectral powers , it doesn ’t matter whether the prior density is

assumed to be uniform in the ampli tude variables aSK, 
bk or in the power

variables The result is a multivariate exponential in the variables

or a mult ivariate Gaussian in the var iables a.K , bk .

One other al terna tive that needs consideration is to work in the (r , O )

13 
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coordinates ~nd to use a prior p(r, 
) that is uni form with respect to the

volume element drd . Integrating over and transforming to the

coordinates leads to a non—uniform prior

/ .. 1 TT, ~—1/2= — I (kX .~)
2

This constrasts with the choice of a uniform prior p(a,b), which corresponds

to a uniform p ior p(x). Since there is no reason to have a non—uniform prior

we rejec t the possibility of a un i fo rm pr ior  p (r , 9 ) .

C. Spectral Probability Densities for White Noise

By “white”, we mean that the expected spectral powers <x.~) are all

equal. What probability density should we use to represent white noise?

There are two obvious possibilities. The first is the uniform prior p(~)

i t se l f , for which x. • x 12 , where x is the maximum value of theic max max

Xk• This is appealing because it doesn ’t require any additional information

beyond the prior . Sometimes, however, we may know the total power per

- discrete frequency of the white noise signal , in which case (19) would seem to

be the appropriate probability density. We shall refer to the first of these

two possibilities as “uniform white noise” and to the second as “Gaussian

white noise.”

Under some circumstances one migh t be wi l l ing  to argue that , although we

don ’t know the total power per discrete frequency of the noise signal, we do

know an upper limit. Stated differently, not only do we know the limit

but

we know a limi t for the quantity

P (q)  

~;~; 
~~k<~

c
k
’) - 

_
~
fd
~ (Z~x~,~)q(~.)

14
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I

namely

P(q)  
~~~ ~maX - (25 )

As mentioned in Section II , the procedure in this case is to see if (25) is

satisfied without imposing a specific constraint , and , if not , to impose the

equality constraint ~
‘ The inequality constraint (25) will be

s a t i s f i e d  by the un i form prior p (x) if

(x /2) ( P . (26)
max ~ max

If (26) does not hold , it follows from ( 19) that the appropriate density is

q(x) F~ ( 1/P
s
) exp(_x.,/Pmax

) . (27 )

If x reflects knowledge about some kind of physical limit while Pmax max

reflec ts knowled ge about power limitations of the signal source , then it seems

likely that ‘26) won ’t be satisfied , which means that the Gaussian white noise

density (27) should be used .

15
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IV. CROSS-ENTROPY BETWEEN INPUT AND OUTPUT OF LINEAR FILTV..

Suppose a si gnal with probability density p(~ ) is passed through a linear

filter with characteristic function y(.l). Then the magnitude x.
~ 
of each

power spectrum component i s changed by the factor

c — v (i ~ 
2 ,

k

where & k ~ k /2~ 
. If q (x ) i s the pr obab i l i ty dens i ty of the s ignal

tha t  r e su l t s  from pass ing p (x )  through the f i l t e r , th en the in put p( x ) and the

ou t pu t q (x )  are related by

q(x) = 
p (x1 /S 1, x2/S2, - . . ,  x /S ) .

SS.. .S1 2  n

The f i l t e r  has the e f f e c t  of a l inear coordinate t ransformat ion . The

cross—entropy between the input and the output  is

H ( q , p )  = 

f 
dx q ( x ) l o g ( q ( ~~) / p (x )~)

= dy p (y 1, . . . , y  )log( p (y 1, . . .,y ~ ) )

(28 )
— 

~~k 
log(S~)

where 
~
‘k 

= X
k/S

k
.

Eq. (28) is a general result for any input signal p(x). Now we evaluate

(28) for the special case in which p(x) is uniform and for the special case in

which  p(x) is exponential. When the filter input p(x) is uniform, the f i r s t

term in (28) is zero, and the cross—entropy between input and output is

16
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I
H(q,p) — log (S~) - (29 )

Notice that , except for sign , this is the discrete form of the expression (1).

When the filter input has the exponential form (21), which in terms of the

spectral amp litudes ak, 
hk is Gaussian , 

the cross—entropy (28) becomes

H(q.p) = -~~ dy 
~~~~~~~~~ 

(y~ -

~~ k 
log(S

k
) ,

or 

H(q,p) = 
~~~k 

( 1 - Sk + log(Sk
) )  , (30)

since Jdy ~~~~~ ~~ 
Notice that this result is independent of the

par t icu la r  1’k values.

V. MINIMUM CROSS-ENTROPY POWER SPECTRA GIVE N AUTOCORRELATION INFORMATION

Let some unknown signal q~(x) have a power spectrum G(f) and

autocorrelation function R(t). Suppose we obtain information about C in the

form of a set of samples of the autocorrelation function

- :

R R(t ) jdf 
G(f)exp (2lritr

f)  (31)

r = 1 ,... ,m. We do not assume that the tr are equally 
spaced . If the

frequency spectrum is discrete , as we have assumed in ( 15) , we can express

C(f) as

c( f)  — 
k~~~~~

1C ~~~~~ 
— 

‘

where — i-k’ Gk C_k — G(fk
) ,  and C0 — 0. Then (31) becomes

- - -.----- .——-.- - —-- — -~~~~~~
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I
Rr ~I C k exp (2witrfk) ,

which we prefer to express in the non—compl ex form

R E C c k ,  (32)
r r

where

c = 2 cos (2 Tr t f ). (33)
rk r k

Since the Ck sat is fy

Gk 
= <‘x.,~

’) = Jdx ;~q~
t~(x) , (34 )

we can rewrite (32) as

Rr 
= 

Jdx ~~~

‘s

k x
~c~~)q

t(x) .

This has the form of known expected values of the unknown density q~ (x) , and

we may therefore use the principle of minimum cross—entropy to infer an

est imate of q t
• In terms of the general form (6), the functions are

= ZkXkCrk S This minimum cross—entropy problem d i f fe r s  from the

one discussed in Section III in that the Section III problem assumed knowledge

of the expected spectral powers in the form (34), whereas in this problem we I -

have only the form (35). Since typically m’<n, knowledge of (35) provides

less information than does (34).

A. Results When No Prior Power Spectrum Estimate is Given

If we have no prior information about qt, then we use a uniform prior p(x)

as discussed in Section III. We then select a posterior q(x) by minimizing

cross—entropy subject to the autocorrelation constraints (35) and

18
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•1

the normal izat ion constraint  (5) .  The result  is

q (x) A exp (_Z~~r~~~~
xi.c

c
r) , 

(36)

where the are m Lagrangian multipliers corresponding to the

autocorrelation constraints (35). For convenience , we define

—

u = 
~~~~. (~~c , ( 37)k ,~~~~i r r k

80 that (36) can be written as

q (x)  A exp(- 2T Uk
X
k

) . (38)

Solving for A in the usual way yields

q( x) 1Tu kexp(-u kxl,~
) . (39)

For our posterior estimate of the power spectrum , we use the density (39)

to compute 
~k ~

x.K) 
— (1/u.s), or

~k - 

~~~~~ (~rcric - 
(40)

where the mult i p liers 
(~r 

are determined by the constraints (32),

R ‘
,~~~~

1 
C
k

r 

~ ~~ ~~~~~~~~~~~ . (41)

The minimum cross—entropy power spectrum estimate (40) is identical to the

result for MESA, except that the MESA equations are usually expressed in

complex form (/10, p. 9/, for example). In fact, one can derive (40) using a

fi l tering argument of the kind usually used in deriving the MESA result.  If a

19
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I

white si gna l p (x )  is passed through a linear f i l t e r  with character is t ic

function Y, the power spectrum of the output signal is given by

= j Y ( f k
) 12 . I f the output signa l is to be an est imate of qt , then we

know that the 
~k must sa t i s fy  (32 ) ,

R = Qkcrk . (42 )

This suggests that we design a filter with minimum cross—entropy between input

output , provided that the output power spectrum sa t i s f ies  (42 ) .  Since one

interpretation of cross—entropy /40/ is as a measure of the information

necess ary  to tr an s f orm the pri or in to the post erior , one can think of this

filter as the one that produces the smallest information change from the prior

while still accounting for all known information . For a unifirm white

prior p (x), the cross—entropy between the input and output of the filter is

g ive n by (29 ) ,

H(q,p) —
~~~~~~ log(Q~ ) (43)

Hence , we min imize  (43 ) subject to the constraints  (42 ) .  The minimizat ion

condi t ion is

_ (l/Q
k
) + 

~~ ~r
’
~rk 0 

-

r% I

an d i ts solut ion for is the same as (40). Furthermore , minimizing (43)

subject to (42 ) is just  the discrete version of maximizing ( 1) subject to (2),

which also shows the equivalence between MESA and minimum cross—entropy

estimation for uniform priors. This equivalence is not surprising, since

cross-entropy minimization is equivalent to entropy maximization in general

for the case of uniform priors / 1/ .

20
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~~. Resu lts When A Prior Power ~~~~ t r u m Estimate is Given

Now we consider the case in which we obtain the autocorrelation

i n f orma t i on (35 )  when we al read y ha ve an est ima te of the powe r spec trum

(34)~ I-i this case the pr i or density is not necessarily un i f o r m , as i t

must reflect the information in the prior estimate of the power spectrum. The

appropriate prior density is the exponential form (21),

p (x) H (1/P
k

) exp (-xk/Pk) •

which itself ig the minimum cross—entropy density, wi th respec t to a uni form

pr ior , g iven knowled ge of the expected spect ral powe r s 
~~~ 

If the pr ior

est imate is the estimate that was obtsined by the me thod discussed

in the previous subsec t ion , then the appropriate prior density for obtaining a

new est imate g iven new au tocor re l a t ion  in fo rma t ion  is  the poster ior  (39) .

Since U
k 

= 
~~~~k ’ 

(39) is equivalent to (44).

We therefore solve the problem of estimating Gk ,  given a prior est imate

and new au tocorr e la t ion i n f o r m a t i o n  (35 ) , by assum ing the prior dens i ty

( 44) and m i n i m i z i n g  cross—entropy subject to the constraints (35) and

~5). The result is

q(x) = p(x) exp(- ~ - 

~~
‘
k~

1kxk )

= e
~~~1

f_!exp (— (uk + t)xk
)

whe re the Uk are d e f i n e d  as in (37) .  Since ~~‘s value must  be such th a t

q ( x)  s a t i s f i e s  the n o r m a l i z a t i o n  cons t r a in t  (5) , (45 ) become s

q(x) (U
k 
+ f.) exp(_ (uk + t) x k ) . (46 )

k

For our posterior estimate of the power spectrum , we use the density (46)

21
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to compute 
~k 

= = l / ( u
k 

+ 

~k~~’ 
or

( 1/ P k
) + 

~~r ~ r C rk

where as usua l the multi p l iers t~ 
are de termin ed by the requ irement that

the 
~k 

satisf y the autocorrelation constraints (42).

We can also derive the result (47) by a fil tering argument that is similar

to the one given in the previous subsection for the case when no previous

estimate was available. Suppose a signal wi th power spec trum 
~k 

is passed

through a linear fil ter with characteristic function Y(f). The output power

spec trum will be = P
k
Sk ,  where S

k 
= 

I
~~~~~k~~

( -  If the output

powe r spec trum is to be our new es t imate , we know that the must s a t i s f y

(42). If the is our previous estimate , this sugges ts that we desi gn a

fil ter with minimum cross—entropy between input and output , given that the

input den si ty sa t i s f i e s  ~~~~ = 
~k 

and th a t the output  power spec trum 
~k

satisfies (42). For input densities of the exponential form (44), the

cross-en tropy between input and output is given by (30). Hence , we choose the

so as to minimi ze (30) subjec t to the constraints (42), which we rewri te

as

R = 

~~I P k Sk c k

The mi nimization condition is

(1/s
k
) + 

~~

‘

(~r 
Pkcrk 0 .

Solving th i s  for S
k 

and computing 
~k 

P
k
S
k y

ields our previous result

(47).
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I
VI. COMPARISON OF RESULTS

Given information in the form of autocorrelation samp les (35 ) ,  the minimum

cross—entropy signal probability density has the form

= 

~~~~~~ 
exp(-x.K /Qk)

where the are the posterior estimates of the signal power spectrum. In

the case of a uniform white prior , the 
~k 

are given by (40),

Q
( l )  

= 
1

k 
Z~~~~~

c
k 

(48)

In the case of a Gaus si an white prior , the 
~k are given by (47 ) with

P f or all k ,

Q( 2) =
( l / P )  + Z 

~~~~~rtc

As discussed in Section III, P is the known value or maximum value of the

expec ted power per unit frequency. In the case of a Gaussian non—white prior ,

the 
~k 

are given by (47),

Q
(3) = 1

( l / P
k
) + 

~~r (~r
’
~rk 

(50)

where the are prior estimates of the power spectrum. In all three cases

(48)—(50), the m Lagrangian multipliers 13r are determined by the
requirement that the Q

(1) satisfy the autocorrelation constraints

R i:: ~k 
c k ‘ 

(51)

k’
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for r = l ,...,m and i 1,2,3.

We begin by comparing the results (48) for a uniform white prior with

those (49) for a Gaussian white prior . Suppose that one of the

autocorre l at ion samp les , say R1, is for zero lag (t1 = 0). Then (33)

shows that C ik 2 holds for all k. It follows that (49) can be written as

(2 )  
— 

1
- 

~~~~~~

where 
f~r 

= for r = 2 ,.. .,m , and = ~~~ 1) 
+ (1/21’).

Comparing with (48), we conclude that Q~
1) 

= Q~
2) 

for all k. Thus,

a uniform white prior and a Gaussian white prior yield the same posterior

power spec trum estimates when one of the autocorrelation samples is for zero

lag. This is reasonable since the zero—lag sample is just the total expected

power per discrete frequency, and since the Gaussian white prior is the result

of minimizing cross—entropy with respect to the uniform white prior given

knowledge of the total expected power per unit frequency (See Section III).

On the other hand , the two results (48)—(49) are not equivalent in general

if there is no zero—lag autocorrelation sample. To see this , suppose there is

only one autocorrelation sample , R1 
= Z~

Qkclk, with t1 ~ 0. If

Q~~
) 

= Q~
2) 

were to hold for all k = l ,...,n, then

(
(1) _ ~,—l + ~ (2) (51)

would have to hold for all k. But and ~ (2 )  
are constants,

wheDeas the c lk vary with k since t1 ~ 0 (see (33)). It follows that (51)

and , therefore , 
~~~ 

— Q~2)  
cannot hold for all k.

Now we compare the results (49) for a Gaussian white prior with the

_____ ________ ______ 
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results (50) for a Gausi ian non—white prior . We consider the case of a single

autocorrelation sample R1 
= YkQkc lk that may or may not be a

zero—lag sample. If Q~
2) 

= Q~
3) 

were to hold for all k = 1 ,...,n,

then

+ ~~(2 )  
= + 1~1 

cik (52)

would have to hold for all k

: 

Since (~
(2) 

and are constants ,

and since 
~k 

varies with k independently of clk, (52) cannot hold for

all k whether or not cik is a constant (zero—lag sample).

The results of the foregoing comparisons may be summarized as follows:

1) The results for a uniform white prior and a Gaussian white prior will be

the same whenever one of the known autocorrelation samples is for zero

lag. Since (48) is just the MESA result , another way of saying this is

that minimum cross—entropy spectral analysis and MESA are equivalent if

there is no prior estimate (other than uniform) of the power spectrum and

if one of the autocorrelation samples is for zero lag.

~
) If there is no zero—lag autocorrelation sample , the results for a uniform

white prior and a Gaussian white prior will not in general be the same.

3) The results for a Gaussian non—white prior differ in general from those

of a Gaussian white prior and those of a uniform white prior , whether or

not one of the autocorrelation samples is for zero lag.
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VII. TOWARDS EFFICIENT ALGORITHMS

Minimum cross—entropy spectral estimates based on autocorrelation samples

are given by (48)—(50), the particular form depend ing on what is known about

the signal prior to obtaining the autocorrelation samples. In all three

cases , one must solve for the Lagrangian multipliers in order to obtain

actual power spectrum values This can be done by subst i tu t ing  whichever

of (48)—(50) is applicable into (51) and solving the m result ing equations for

the 
1~r~ 

Unfortunately, this approach is unlikely to be suitable for

real—time signal processing although it has the advantage of considerable

generality. In particular , the results (48)—(50) and (51) make no assumptions

about the number and spacing of either frequencies or autocorrelation

samples.

In many real—time signal processing applications , it is reasonable to

assume that the the frequencies 
~k 

are equally spaced 
~k 

— k~~f, and that

the autocorrelation samples R(t ) are equally spaced at the Nyquist rate ,

tr 
= 1/(2n~~f). In this case, the coefficients Crk become

C k 2cos(lTrk/n) . (53)

This form has a variety of properties that can lead to algorithmic

simplification s, the fast fourier transform being the best known example. In

the MESA case (48), the simp lified form (53) leads to efficient algorithms

that are equivalent to autoregressive and l inear prediction methods /10/, /19/.

It seems reasonable to expect that similar efficient technique. can also be

derived from (49) and (50).

Even in cases where there the form (53) does not apply, there is one
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situation in which cross—entropy spectral analysis given a prior spectral

est imate and new autocorrelation samples may be particularly efficient.

Suppose that the prior spectral estimates are completely consistent with

the new autocorrelation samples , i.e., that Rr 1
~k 

PkC k holds

(compare wi th (42) or (51)). In this case the multipliers 
(~r 

wil l  all

sa t i s f y 
~ r 

= 0, and the posterior spectral estimates will not change from

the prior estimates, 
~k 

= 
~k 

This follows from a general property of

cross—entropy that H(p,p) < H(q,p) for all q ~ p (e.g., /29, p.l4/), which

means that the minimum cross—entropy posterior will equal the prior whenever

the prior meets all constraints. Now suppose that the prior estimates

were obtained by cross—entropy minimization given a prior set of

autocorrelation samples R .  The foregoing suggests that f the new

samp les Rr are close in value to the old samples R’ ——— i.e., the

spectrum is slowly changing -—— then the multipliers (3r will be close to

zero. As mentioned above, the multipliers are determined in general by

subst i tu t ing (47) into (42) and solving the resulting equations . The result

of the substitution is

Rr 
= > I P k C rk (l + 

~k Z~~j
cjk

) . (54)
k~1

If the (31. are close to zero, we may expand this ignoring terms of

and higher , yielding -

R 
~~~ 

(P k C k 
— P

~
C k ~~ ~~

C.k) . (55)

However, the pr ior spec tral est imates and the prior autocorrela tion

samples R are related by R — 
~~~~ 

P
kC k. It follows that we
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may wr i t e  (55) in the form

= R - R’ , (56)r r

where we have defined d . asrj
S

d .  = / Pc  c. . (57)
rj i-. --- krk jk

Thus , in the case of slow ly a chang ing autocorrelation function , (54) reduces

to a set of linear equations (56), whether or not (53) holds. If (53) also

holds , then the computat ion of (57) should be simpler , thereby making the

solution of (56) even more efficient.

VIII. CONCLUSIONS

Depend i ng on the extent to which a previous estimate is available ,

cross—entropy minimization provides various alternitives for estimating power

spectra given autocorrelation samples. The results reduce to those of maximum

entropy spectral analysis (MESA) in a manner that , in my op inion , provides a

better derivation of MESA than previous approaches. When a previous power

spectrum estimate is available , cross—entropy minimization leads to a new

estimate that differs from the ~!ESA result. Because it exploits more

information , the minimum cross—entropy estimate should be better than the MESA

estimate . This possibility, and the quest ion of e f f i cient algorithms , will  be

exp lored in further work.
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